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ABSTRACT

A Navier-sStokes code, developed by N.L. Sankar, and an
Interactive Boundary Layer ccde, developed by Tuncer Cebeci,
are implemented for high Reynolds number, low Mach flows
over a NACA 0012 airfoil. Upper surface pressure
distributions, coefficients of 1lift, coefficients of
friction, and velocity ©profiles obtained from the
Navier-Stokes code are compared to results obtained from the
Cebeci Interactive Boundary Layer code for steady flow. The
steady state cases investigated are at .3 Mach and Reynolds

numbers of 1 to 15 million, and at .12 Mach and a Reynolds

number of 1.5 million.
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o I. INTRODUCTION
{
|‘ r
:?: ! Computational fluid dynamics has matured significantly
% 'I \
§ within the past decade because of the development of
R
"i‘. ')‘. increased computational capabilities and powerful
e
f:‘: computational techniques. Current problems being addressed
'&!’1
K]
-:::3:0 include predicting flow separation over airfoils and
)
' post-stall flight characteristics. These areas are of
s‘vl'
-::';"’ interest because studies [Ref. 1] indicate increased 1lift
»
_;'::';" and thus sustained flight are attainable when an airfoil is
)
‘ 3 dynamically stalled, that is, its angle of attack is pitched
."...‘
Zj-j\: to a post stall angle of attack rather than being initially
;'.-).,"
rre placed at that high 1lift.
Fig)
o Computational methods utilizing the full Navier-Stokes
“'
)
’j (N-S) equations are capable of addressing these issues, as
-"
::: are methods that include approximations to the Navier-Stokes
0
D) equations. One method, the Interactive Boundary Layer (IBL)
ey
'.'., technique, developed by Tuncer Cebeci at Douglas Aircraft
1
‘e
’::lfh Company and at the California State University [Ref. 2],
%)
)
) divides the flow over an airfoil into a viscous inner
Ry >
'f}:f boundary 1layer and an inviscid outer 1layer. The
%
o" >
.,'.. characteristics of the inner flow are obtained from a
tiy!
®.- numerical solution of Prandtl's boundary layer equation and
A3
J; the outer flow's characteristics are determined from Hess
20
::t;’f' and Smith's panel method, and Fourier analysis and conformal
ok
g
! 1
B
W,
"
:.'. ]
04

Q‘. :‘
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mapping. The inner and outer layérs-are then redetermined
by an interaction model that iterates between the two
regions and marches downstream until the flow conditions
have been satisfied at the boundary for both regions. The
Cebeci IBL code wuses Michel's criterion to predict
transition from laminar to turbulent flow or transition may
be prescribed. An algebraic (Cebeci-Smith) turbulence model
is used.

A full Navier-Stokes code developed by N.L. Sankar and
his associates at the Georgia Institute of Technology [Ref.
3] uses an implicit finite-difference procedure to solve the
2-D Reynolds-averaged compressible Navier-Stokes equations
in strong conservative form. The time-marching algorithm
used is an Alternating Direction Implicit (ADI) procedure
developed by Beam and Warming [Ref. 4] and implemented by
Steger [Ref. 5]. The Sankar N-S code uses a body-fitted
C-grid system and an algebraic (Baldwin-Lomax) turbulence
model.

The Cebeci IBL and the Sankar N-S codes are designed for
different purposes. A low Reynolds number flow over an
airfoil tends to be laminar until separation. The flow then
transitions to turbulent flow and reattaches as turbulent
flow. The Cebeci IBL code models this separation bubble if
transition is specified within the separation bubble.
Velocity profiles and skin coefficients are extremely

important in analyzing these low Reynolds flows. Cebeci has

L& ;
O SIS

73, 8% ) §
'4"‘0\7;, 1atiog



developed codes for compressible oscillating airfoils,

;% however, this Cebeci IBL code was <developed for
. incompressible steady state flow only and thus does not
gg . predict the effects of unsteady flow nor compressibility.

;%' . The Sankar N-S code was developed to address dynamic
gﬁ: stall and its implication of increased lift. Therefore, the
’?§ values of interest to date have been coefficients of
j%? pressure, lift, moment, and the effect of hysteresis on
gt: these values. However, the Sankar N-S code assumes the flow
i’ is fully turbulent, and therefore does not account for
i? transition from laminar to turbulent flow.

Ei Neither dynamic stall nor transition within a separation
{& bubble are easily quantified experimentally. Transition is

a boundary layer phenomenon and the velocity profiles and

."*c-w

2

skin frictions within the boundary layer must be measured to

assure correct interpretation of the flow under

-

investigation; surface pressures are not sufficient to

5{ accurately locate flow separation and reattachment [Ref. 6].
'§¥ This is a time consuming, expensive process prone to error.
?ﬂ Experimental methods include laser anemometry and hot wire
.2 probes (Ref. 7]. Disturbance of the boundary layer flow due
aﬁ to probes is undesirable and hot wire probes are normally
3{ unable to determine flow direction; therefore 1laser
;; ) anemometry, although expensive and tedious, is increasingly
%; being used.
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Dynamic stall is difficult tokcharacterize due to the
transitory nature of the phenomenon. Experimental
techniques and apparatus include pressure transducers, hot
wire probes, and laser doppler velocimetry [Ref. 8]. Flow
visualization is also a very effective tool for studying
both dynamic stall and separation bubbles [Refs. 9,10].

A good review of the current state-of-the-art
computational and experimental aspects of aerodynamic flows
is given in the proceedings of three symposia on this topic

edited by T. Cebeci [Ref. 11].

N -

AR ) EOMOSOBRIACHCAOMCAIN LA A ,o', W t', ST e e l', ORI
0 'i "w-"'.".l‘."i"‘ce“:’"lld‘ .?l‘»‘c’sfo';ft'.,'A'.'o'.'o’.'n‘,'u‘.?n'.'o‘ RAURR LKA M N M R I LA




LI PO TR R A
e e e

II. OBJECTIVES

The intent of this study is two-fold: to become
familiar with computational fluid dynamic methods and to
evaluate two codes to determine their range of
applicability.

Computational fluid dynamics consists of various
mathematical methods and implementation schemes. A
significant.portion of analysis inherent in computational
codes is eﬁpirical; therefore, the assumptions used strongly
influence the results. It is important, when attempting to
choose a computational code for a specific purpose, to be
familiar with the significance of the analytical methods,
assunptions made, and empirical models. Each code is
different in these respects and must be analyzed
individually and in detail to assure reliable, accurate
results, especially when extending the flow regime or
airfoil to conditions whose features are unknown.

The two codes chosen, the Cebeci IBL code and the Sankar
N-S code, are a good representation of +two powerful,
accurate methods that differ widely in computétional
approach. The Cebeci IBL code has been extensively tested
in a variety of steady state conditions [Ref. 12] and the

Sankar N-S code has compared well to experimental data for a

pitching airfoil [Ref. 13]. However, the lack of steady
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f&- state boundary layer data for ‘the Sankar N-S code indicated

;é that a more in-depth analysis of the applicability of the
4

ﬁé' code was required. The Cebeci IBL code was used as the

o reference for the Sankar code.

Qs The analysis included the following:

AN 1. Assess C; for Reynolds numbers of 1.5 and 6 million

éﬁ\ 2. Assess Cy and C¢ for a range of Reynolds numbers (1-15

Y million at 0 degrees angle of attack) and angles of

My attack (0, 2, 4, and 6 degrees for 1.5M Re number and

Wi 0, 4, 8, and 12 degrees for 6M Re number)

3. Assess velocity profiles for Reynolds numbers of 1, 6,
BOON and 15 million

,Qy‘ 4. Assess the influence of dissipation factors and
R grid size on the results of the Sankar N-S code.
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III. C FORMU N

A. GOVERNING EQUATIONS
Flow over an airfoil can be described by the velocity
; = u; + vg + wﬁ} the pressure, the density, and the
temperature. These six_variables (u, v, w, p, P, and T) are
fully described by the continuity equation, the equation of
state, p = pRT; the energy equation, §Q - §W = SE; and the
three equations of motion. [Ref. 14)
The continuity equation states mass is conserved:;
i.e., the flux of mass through a cube per time is equal to
the time rate of change of mass. This is shown in Figure

3.1 for the flow through the faces perpendicular to the x

axis. Mathematically this is expressed as

[ﬁéﬁEl AxX] AyAz - [a§§V) aylazax - [—— (ow) Az] AxAy

=5 (pAxAyAZ) (3.1)

Since the control volume is fixed, AxlAylAz is

A ¥,

independent of time; therefore

d(pu) , 3lpv) , 3low) _
X 3y 3z !

3p
S 2+ (3.2)
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Source: [Ref. l4:p. 106]

Figure 3.1 The Flux of Mass Through a Cube
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z;,'t _a_g.}. A . pq (3.3)

Alternately,

W Dot PGE + ae g = 0 (3.4)
Wt

¥ or
of ..‘Q

Dp q) = 3.5
be + P(A-q) =0 (3.5)

ey The three equations of motion, one for each axis of the
s Cartesian coordinate system, are described by Newton's
t

~$ second law, AF = A(ma). The summation of the x components

of surface forces on the element shown in Figure 3.2 is

= - Du (3.6)
AFX-Am%{— mAmnmz)[m

s = "x Ax) byAz
,q“:,. AF = - O'XAYAZ + (O’x + 5% Y

f? ‘x‘: 9T

Lo - + + Ay) AxAz
el Tyx AxAz (Tyx 3y y)

9T
X zx
W T Tax OXAY (T *

Ix

Az) AxAy . (3.7)
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STRESS-STRAIN RELATIONS

::.n:: Figure 3.2 X-components of Surface Forces on an Element

’,sa:.. 10

. o OO KA M A ] : UAANASAGALOOONUOL AT i’ LA :_,*l 5
:‘5",".‘.‘.‘3}' UL { 0 \?"& “I‘ ‘_l"fC‘ e ,"V.‘_’-‘.‘ BULFRRAN "’,r" Y "nh‘,’?*u"" t -4 R

A i t?

H
it




R XY Y NNy

- - e

oy

- A

PLw

. m m e e

L) DS ] AL
] 0y LIS N T b [
‘l',.l. 'A.,‘\”.' L

Dividing by the volume of the element yijelds

90 ¢ aTyx 9T, x Du

Similarly, for the y and z directions

90 9T T
_§§.+ Xy, ZY _ P bv

Q|

X 92

and

Boz 3sz aryz

9z + 3% T y

= o, ¥
P pt

5y T ez P Dt

(3.8)

(3.9)

(3.10)

For Newtonian fluids with a single viscosity coefficient,

the normal and tangential shear stresses are as follows

(Ref. 137]:

o, = ~P t+ 2u %% -~ %u (V-q)
o, = P + 2y %% - %u (V-q)
o, = -p + 2y %% - % (V-q)
Tox = Txy = u(%% + %%
Tyz = Tzy = u(%% + %%)
T = (§-E +

ZX Txy = Wiz X

f
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(3.11a)

(3.11b)

(3.11c¢)

(3.114)

(3.11e)

(3.11f£)
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O Substituting these stress definitions into the equations of
e motion, and assuming a constant viscosity corresponding to
the mean temperature of the fluid ultimately yields the

v
A Navier-Stokes equations:

Du
Dt

) M9 .
) - + U=+ —5 + —3] + 3 33[V-ql (3.12a)

\
©

(3.12b)

!
+
=
(X
+
™)
+
X
+
wie
|
©
=i

3 ~
W[V'Q]

o S I L +2%) + & %;[V‘q] (3.12¢)

\
?g

o or in vector format

!
©
Az

g -7p + uv%q + BV (v-Q) + p(q-V)q (3.13)

(Ref. 14]

bt B. REYNOLDS STRESSES

o The Navier-Stokes equations are valid for laminar and
i turbulent flow. However, the complexity of turbulence has
“& made it impossible to relate the motion of the fluid to the
boundary conditions and obtain an exact solution.
g Therefore, the turbulence must currently be modeled. 0.
%3' Reynolds divided the turbulent flow into a mean motion and

fluctuating, or eddying, motion as follows:

N
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!‘:. . u = 1-1. + u' (3.143)
3
"
Y
[ v=vV+ V' (3.14b)
< -
v:,:
o
" p=p+p (3.144)
ﬂ
-.‘
» ¥
o=p+p (3.14e)
o
"
L,
R T =T + 1 (3.14£)
¢
)
'.':s where the barred terms are the time-average of the component
)
")
,.::t and the slashed terms are the fluctuations. By definition,

the time averages of all quantities describing the

L fluctuations are equal to zero:

:’q"l

i

‘o:¢

e | g'=0, v'=0, w' =0, p'=0, p'=0, T =0
a

l.'

l’.

::: Rules for operating on mean time-averages are given
K

o below. F and g are dependent variables, and s is the
W

“

::,‘: independent variable x, y, z, or t.

)

~ i? = iT

o

i FFe=FT+3

A _

7 Frg=1¢f*3g. [Ref. 16)
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The stresses caused by the fluctuations can be
éx determined using the momentum theorem. Consider an area dAa
. with dA * pu * dt being the mass of incompressible fluid
,&v passing through the element in time dt. Thus, the flux of

an momentum in the x direction is

pith
)
‘i' A de

=

* pu? *dt; (3.15a)
Correspondingly,

&g dJy = dA * puv * dt (3.15b)

) and

AT, = dA * puw * dt. (3.15¢c)

o Calculating the time averages for the fluxes of momentum

D) per unit time yields:
o dJ, = dA p u? (3.16a)
il dJy = dA p uv (3.16b)

9 dT, = dA p uw. (3.16c) ‘
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Utilizing the definition of turbulent flow and the previous

rules yields

&, = da - b (@ + u'd) (3.17a)
Ey =daA - p@v+uvh) (3.17b)
Ez =da « pu-w+ u'w') (3.17c)

Dividing these rates of change of momentum by area dA, we
obtain stresses. The equal and opposite stresses exerted on
the area by the surroundings are a normal stress, -(ﬁ2 +
u'2), and two shearing stresses, -(Qv + u'v') and -(uw +
u'w'). Thus, the superposition of fluctuations on the mean

motion gives rise to three additional stresses
o,=-pu'", t1' =-pu'v', T' =-pu'w'. (3.18)

The total streés tensor due to the turbulent velocity

components of the flow are

0}'{ T}"y T;(z u'v! u'w'
Ty % o = - v T . (3.19)
0. S 5
it . ' ' ' (] [
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The presence of fluctuations presents itself as an
apparent increase in stresses (viscosity). These
additional stresses over the mean or laminar stresses are

termed apparent stresses or Reynolds stresses.

B. TURBULENCE MODELING

The presence of Reynolds stresses in turbulent flow
introduces additional wunknowns in the Navier-Stokes
equations. Therefore, the Navier-Stokes equations,
continuity, the perfect gas law, and the energy equation are
no longer sufficient to completely define a solution. This
is known as the closure problem and is usually resolved by
turbulence modeling. [Ref. 17]

A common method used is to relate the turbulent stress
to the mean flow properties through empirically based
algebraic formulas. An eddy viscosity, V¢, is defined in
the same form as the laminar viscosity. Previous models
related surface boundary conditions to points in the fluid
away from the boundaries <through wall functions. This
avoided modeling the direct influence of the eddy viscosity:
however, it is only applicable in regions where the Reynolds
number is high enough for viscous effects to be unimportant

or where universal wall functions are well established. 1In

turbulent boundary 1layers at low Reynolds numbers, in
unsteady or in separated flows, or in three-dimensional
flows, the flow close to the wall must be described. [Ref.

P 18]
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A common algebraic turbulence model divides the flow
into an inner and outer layer. The inner layer is defined
by a modified mixing 1length formula that utilizes some
damping function. The outer layer includes the wake and
another damping function. [Ref. 17]

Other empirical methods currently in use, such as the el
method, predict transition. The e method is a stability
method, based on 1linear stability theory. It assumes
transition begins when a small disturbance is introduced at
or below a critical Reynolds number. The transition is
amplified by e2. This method allows greater generality of
the flow, however the formulation still relies on empirical
terms. [Ref. 19]

The accuracy of turbulence models are limited by the
accuracy of the empirical constants. Caution must be taken
when using a mo&el under different conditions, i.e., a
different flight regime or a radically different airfoil.
The turbulence models mentioned above c¢an be fairly simple:;

a more complex model is still not generally usable because

of the computation costs involved and the uncertainty of the
constants.

Tﬁe influence of turbulence and the transition from
laminar to turbulent flow on the airfoil need to be
understood and accurately modeled for a good description of
the flow over the airfoil to be detailed. As experimental

methods continue to improve and as computational methods

17
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utilize the data, improvement in the detail of the flow
field and in flow prediction will follow. |
1. Cebeci-Smith Turbulence Models

The turbulence model used in the Cebeci Interactive
Boundary Layer (IBL) is a simple algebraic eddy viscosity
expression. Simple algebraic models seem to adequately
predict turbulent flow for wall boundary 1layer flows in
which the Reynolds shear stress and frequency do not change
rapidly. However, if the rate of change of shear stress or
the frequency is large, turbulence models are not currently
satisfactory. [Ref. 2]

The Cebeci IBL code utilizes the algebraic
eddy-viscosity formulation of Cebeci and Smith [Ref. 20].
The turbulent eddy viscosity, V¢, for wall boundary flows is
defined by two separate formulas; one for the inner region,
based on -the Van Driest approach, and the other for the

outer region, based on a velocity defect approach:

2 3u
{0.4y[1 - exp(-y/A)]1} I—B—y-lwrt.'r for 0<y <y,

o (3.20)
Vt .
a [ (ug-udy vy, Y for y,<y<$
0
where:
1/2
A= 26v| (v _g_u_) and
Y max
_ 1
= 5 -
1 + 5.5(y/9)
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o The continuity of the eddy viscosity defines y.:; the
&» expression for the inner region is used outward from the

wall until it agrees with the outer region, which is then

*{ used. Y¢r is an intermittency factor which allows for a
jv'i.
ﬁak : transition region when progressing from laminar to turbulent
'.‘Q_a
V) flow. It is given by
0%
ol 3
e u -1.34 X g
:::,: Yer = 1-epl-——— R, (x - xtr) f u—] (3.21)
A G Y tr X e
s
,fﬁ where the transitional Re number, Rexu: = (ueX/Ver) - The
g
i% empirical constant Gy¢, is dependent on the Reynolds number
Lo

@ of the flow. High Reynolds numbers flows indicate Gyg¢y =
A

¥

:j 1200, lower Reynolds number flows seem to be better modeled
:J? by lower values of Gy¢ry. [Ref. 12]
i‘,, The parameter o in the outer region is given by
i&~ @ = 0.0163/F2-5 where F is the ratio of the normal stress
p" \
;%; turbulent energy to the shear stress turbulent energy
[ B
:{' evaluated at the point of maximum shear stress. This can be
f".‘
h%' expressed as
':t}.'l
.“.‘..
,’u‘g - -

o F = ‘(u'2 - v'z)au/ax' (3.22)
w‘ [ e — *
'::1:0" l - u'v' du/dy )(-u'v')max
t:'.:. i
¢
‘?' The ratio of the time-averaged quantities are
:;s assumed to be a function of Ry = T /(-u'v')pax which can be
¥ .'
2y
ﬁ%ﬁ represented by
)
e
15 .~
R 19
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6
| 2-57 | TRERy Tt
B = "U -V s = (3.23)
-u'v' —_— ZRT
(=a'v')
max rRr Rr > 1.0
Thus, the expression for o is
o = 0.0168 5 [(Ref. 2)
(1 - B(3w/ax)/(3u/3y)] ™"
(3.24)

Note that the value of Y has the effect of reducing
the eddy viscosity away from the airfoil surface. This
turbulence model does not take into account the wake region,
nor is it validated for separated flow.

2. win- o

The Sankar Navier-Stokes (N-S) code also uses an
algebraic eddy viscosity model, the Balwin-Lomax Turbulence
Model [Ref. 21). It is based on the Cebeci-Smith two layer
model ({Ref. 22] used in the Cebeci IBL code and may be

expressed as

2
{.4y[1 - exp(-y/A)]1} |w| for 0<y<y,

v, = : (3.25)

.0168(1.6) F, ;o Fi oy (¥) for y <y <$

where

>
]

26.

20




The inner region is the same mixing length formula
of the Cebeci-Smith model, simplified. No intermittancy
factor is included (flow is calculated as wholly turbulent),
A is a constant rather than being dependent on viscosity and
velocity gradients, and the velocity profile (du/dy) is
replaced with the product of vorticity and density.
[(Ref. 13]

The outer region is based on the wake function,

Fyake and the Klebanoff intermittancy factor, Fgjep(y)-

[Ref. 22]
. 2
Foake = m.m(y'max F __,.25 Yax Udif/F ) . (3.26)
6 L '
FKleb(y) = [1 + 5.5 (.3y/y | (3.27)

The quantities ypay and Fpay are the maximum values obtained

from the function

Fly) =y |w| {1 - exp (-y'/a")} (3.28)

which is a form of the mixing length formula used in the

inner region.

Uqif 1is the difference between the maximum and
minimum velocity of the velocity profile. Fyakeis similar
to the y of the Cebeci-Smith turbulence model and thus also

reduces eddy viscosity away from the airfoil surface.

21
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]

This model has been used in separated flows and in

the wake, however its validity is not assured in these regions.




i IV. THE BOUNDARY LAYER EQUATION

3 Prandtl clarified the influence of viscosity in high
‘o S Reynolds flows by simplifying the Navier-Stokes equations to

yield approximate solutions. He divided the air flow over a

S body into two regions:

A

: 1) The region near the surface where viscous forces
“ dominate.

) 2) The rest of the flow where inertia forces dominate;

0N this region may be considered frictionless and
i potential.
e Consider a 2-D incompressible flow over a body. Most of

) the flow is moving at free stream velocity. However, at the
surface the velocity is zero, increasing to free stream at
" some distance from the surface as shown in Figure 4.1. 1In

N this first region, called the boundary layer, the velocity

5? gradient normal to the wall, 3u/3y, is very large, as is the
fﬁ shearing stress,

:; RN (4.1)
f

G The two regions are not distinct, but are usually divided at
is the streamline where the velocity reaches 99% of the free
:' stream velocity.

iq Simplification of the Navier-Stokes equations will be
3 accomplished by doing an order of magnitude analysis of each

oy term. The following assumptions are made:

23
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Pressure decrease , Pressure increase

Figure 4.1 Velocity Profile
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'
e::::
.‘,:'.' 1) A flat wall coinciding with the x-direction, with the
$ y axis perpendicular.
.,\
g2 2) 8 << L
’ §/L << 1
s."
{::( where § is boundary layer thickness and L is a linear
W dimension of the body so selected to ensure du/dx = 1
O under the region in consideration.
?.'Q‘
,.“ 3) The Reynolds number, R = Ulp/ u= -L% is large. [Ref.
;0:; 16]
%
EE‘" The Navier-sStokes equations are rewritten in
G
¥
":!: dimensionless form:
o - Velocities are with respect to the free stream velocity,
't
;',::: - Linear dimensions are with respect to a characteristic
o length, L.
@
' - Pressure is divided by pUZ2.
:‘ Retaining the same symbols for the dimensionless quantities
B
f; as for their dimensional counterparts, and writing the order
gg:} : of magnitude under each term yields for continuity:
ey,
:’Q:::
,;t’
.0
U u v
. | — e —— = 0 (4‘2)
D) 3y | 3y
Wy
::"I 1 1
'y
»
‘ and for the Navier-Stokes equations:
A
¥
‘{" 3 9 3 1 'c)zu azu
: dirx usm+vie=-RiE s+ (4.3a)
bR ox Y ax R;}?- 8y2
& 11 6 3 21 = <
. ¢
1558 6
b v, av_ _op, 13%, 3%
K i A4 L= - == + == 4.3b
oo dir y Uikt Viay ay+R(82+32 ( )
.Ji' y
" 16 § 1 s & s 3
25
Yo
N

'\"1"#‘"
o 0N e WA

g , " . ~ WA AT . P PN AT AT R
DX A KO OO MO X N MO N i X O O A OO R RO DR O 0 ) ;
’ "c“‘:"‘l.' ':"'» ’ .. ",' "," “" "'tﬂ"l.'.“'.."‘u 'EO.‘ti"‘.i"‘,O"’l “.0"‘_.!“.9"5“‘:’"‘-"‘.0".'-"30.".0"‘.0'?' "?0"?!"‘J"‘J"""‘:".\."*.‘...'.‘.! .O"’t L) ':‘.‘.t"d ) ‘J"'J



vﬁl At the outer edge of the boundary layer u equals the
steady flow U(x). The viscous terms no longer dominate and

v thus, for the outer flow

1
Q>

? 8]

=-123p (dimensional) (4.4) !
p oxX

-& or rewritten in the form of Bernoulli's equation
P+ 1/2 o 02 = constant - (4.5)

%Q Returning again to dimensional quantities, the
® simplified Navier-Stokes equations, known as Prandtl's

Boundary-Layer Equations may be written:

—tam=0 (4.6a)

ao": 1 QE 32u
ol u—a-)-z+v——=-3dx+\r——2— (4.6Db)

oy

Qﬁ with the boundary conditions y = 0: u =0 v = 0; y = inf:
u = U(x). Also, a velocity profile at the initial section,

X = Xgo, must be prescribed. [Ref. 16]
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K
o V. THE SANKAR NAVIER-STOKES METHOD
g
;s The Navier-Stokes Code utilizes the governing equations
‘
ot in conservative form, a body fitted coordinate system, and
S0
,’i an Alternating Direction Implicit (ADI) procedure [Ref. 23].
tah
';E;; The governing equations in conservative form iave the
f‘.g"
R coefficients of the derivative terms constant. The
i"'}':
_ conservative form ensures the conservation of the physical
K
*. properties.
O A. GRID GENERATION
@
R _?, The requirements of a grid in the physical plane and in
g
';3 the computational plane are conflicting--therefore a grid
[ A
b transformation is advantageous. For ease in computation,
,‘.;;‘! equal spacing of grid points is desirable; however, the
e
't' physical grid needs to be clustered so that the boundary
!‘(‘
_v‘?)-f layer and sharply curving surfaces such as the leading edge
.;i;.. contain enough points so as to be adequately defined. The
L}
) .
E'; boundary conditions must be accurate and should be contained
...
XN on rectangular surfaces in the computational plane. Also,
o0 the grid should be smooth with few discontinuities.
1§
Al
ﬁ}: The present code wuses an algebraic C-grid which
PI
. generates a sheared parabolic coordinate system [Ref. 23],
;" ' © first proposed by Jameson [Ref. 24].
ke
el
'
R
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First, two points, T and N, are defined on the desired
airfoil in the X-Z plane as shown in Figure 5.1. These

points are defined by the complex values
Zp = Xqp + iy (5.1a)
2y = XNy T in (5.1Db)

respectively. T is located at the trailing edge of the
airfoil and N is located half way between the leading edge
and the center of curvature of the leading edge.

Next, the airfoil in the physical plane is transformed
as shown in Figure 5.2. A trailing edge vortex sheet shape
is assumed to leave the trailing edge smoothly by running
tangent tc the mean camber line at the trailing edge. The
airfoil and wake are then mapped onto the plane by using the

following transformation,
T =vz -2y . (5.2)

The NACA 0012 airfoil shape transforms to that shown in
Figure 5.3. Cubic interpolation defines additional points
to smooth the surface.

The far field boundaries are mapped in the physical and

computational planes as shown in Figure 5.4.

28

MK DO

AL Q00 R OO A B S AOASNEIA) SUOL oA A 2 OO0 RO ' (U]
."2\','.'5: .S'b,:'w'.':’b:q‘i WO ._:":.ih’!.'%‘.ﬂa‘fh‘:'b’?'o“”o A, .'A\":" SONGY 'Q,-fﬂ.}\,ﬂ “l,"i"'«:"|"‘-‘." W



Ao TN TP YW EFTEY T PR EN EA TN IR WO A T AT Y P U W W FeT

2 s.

)
el

g

>
L

=
%

P

Y
"

e
\ KA AL

Figure 5.1 Defined Points on the Airfoil Surface
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Source: (Ref. 13:p. 19)

_f Figure 5.2 Symmetric Airfoil in the Physical Plane
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Source: (Ref. 13:p. 19)

Figure 5.3 Symmetric Airfoil Unwrapped in
the Intermediate Plane
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A sheared Cartesian coordinate system is then
constructed in the ; plane. It consists of straight
vertical 1lines which then contain specified clustered
spacings defined by a stretching function. This allows the

grid size to increase normal to the surface.

) Lastly, the grid is mapped back to the physical plane.

:% The points on the computational plane, ¢ , are given by
n.:

¢ L]
Ry T = &+ in (5.3)
P

§ and on the physical plane by

ol
o

Wt X = Xp = £2 + n2 (5.4a)
@

l’l 4
‘:‘h [REfS. '13,23]o
e

R
. The present method uses a grid containing 161 points in
ll'i
f{ the £ direction and 41 points in the ndirection. The final
y \-
}3 grid in the physical plane is shown in Figure 5.5 and a
X

J detail of the grid around a NACA 0012 airfoil is presented
o
R in Figure 5.6.
p A
W B. INITIAL CONDITIONS AND BOUNDARY CONDITIONS

o The initial conditions for viscous flows are the free
[)
;‘} stream conditions. Viscous dissipation inherent in the
S
%; equations will minimize errors in this approximation after a
i ' sufficient time. Inviscid flows require the proper
"
’:f combination of Tartificial" dissipation and boundary
> conditions for the correct result.

e
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o Boundary conditions must be defined on the airfoil, at

:ﬂ the far field, and in the wake. On the solid surface, two

;N conditions must be satisfied; no penetration of the surface

“ﬁ and the solid and fluid have the same velocity at their

é; ~ boundary (the no slip condition). Adiabatic flow is .
Lr assumed.

§  In the far field, the flow is represented by the linear

“& small disturbance equation

'.'r

0 (1 - )20y + Oyy = 0 (5.5)

R

g

? where ¢ is the perturbation potential and x and y are the

:3 physical plane coordinates. This model is used instead of

” ‘ specifying flow conditions at infinity to compensate for the

;1 loss of 1ift experienced when the boundary is not placed far _
: enough away from the solid surface [Ref. 23].

%: In the wake, the grid procedure produces a "cut" along

E# the coordinate line from the trailing edge to the far field

gg boundary. Here, the flow properties are averaged from above

%; and below. [Refs. 3,13])

‘tj C. NUMERICAL FORMULATION |

;E The coupled and non-linear governing equations are

b solved using an alternating direction implicit time marching

_} procedure similar to that developed by Beam and Warming ‘
ﬁ? [Ref. 4] and as used by Steger [Ref. 5]. The governing

3’ equations are assumed to have a solution at some time t, and
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R the solution is then advanced to some time tp,;; using Euler

:2% implicit time differencing. The equation is then linearized
o
N,
f using Taylor expansion and reduced to a series of
2,
fﬁn one-dimensional problems using the Beam and Warming
"‘.
?§ . approximate factorization method [Ref. 5].
Y
V) The procedure is not fully implicit since the viscous
- terms are lagged by one time step. Artificial dissipation
3
iﬁ is included in both second and fourth order terms to obtain
KR!
o accurate surface pressures. The ADI procedure is limited in
RO
ﬁ:; time step because of accuracy but the explicit boundary
e
:$$ conditions further 1limit the step size due to stability
»0.8
o considerations.
) »
.’ 1 ]
B 1. Governing Equations
K)
ﬁp The governing equation in the computational plane is
(LA
\ given as
3rq + 3 E + anF=Re‘1(3€R+8n S) (5.6)
where
->
q=4qa/Jd (5.7)
-> -»>
E = (&g + £,E + £yF) /3 (5.8)
> ->
F= (ngd + ngE + nyF)/J (5.9)
e
;»:sc
A% 37
.‘l.a
n:.:|
Ti":
@

” AR

ACAON0ON0D
Wil e Ly

RSO OO OO O A0 O OO A S Al GalhiA
U ‘H‘:'u'!'l.,:'..,a".v.i. .’l‘o'ieo"..o't‘.o 59'".0""“ .0".0.‘."‘."’-'.'1*“ et

B0 S i B W VT
] .“:‘A.?:‘A‘?'t.f. v..,‘t..‘.i.’““‘.l.a.l




l p . bs s 0 v <
0 OROUT " Pt a V', X AW
a','n',.c W Sy, '\'-".o‘ﬂ“‘i.r'i' ".o '.o bo,%, v" R e Y A M ARG A o DA DA

W™ - L DWW PT T T TRwww

R = (E4R + Eyg/J
S = (ngR + ny§)/J
x = (A+20) (Gup+meu ) + A(EyVe+nyv,)
Xy = u[(éyug‘*nyun) (&t Vy) ]
yy = (K+2U)(Eyvg+ryvn) + A(gxu£+rkun)
Ry = UTyy + Viyxy + kPr=1(¥-1) (&8¢ a2+nx3na2)
Sq = UTyy + VTyy + kpr'l(Y-l)(Eyaga2+ny8na2)
J is the transformation Jacobian:

T = Exny~Gynx = (%Y "X ¥

Also,

Ex = Jy,
EY = -Jx
ﬂx = -JY€

T o

(5.10)

(5.11)

(5.12a)

(5.12b)

(5.12c¢)

(5.13a)

(5.13b)

(5.14)

(5.15a)

(5.15b)

(5.15c)




;5:3, ny = JIx; (5.15d)
NN

l"‘.

R

N

v e

s

'E:? Ng = =X Nx-YNy (5.15f)
<)

& H

o, . .

2 X Details of the derivation of the governing equations in the
() al

mﬁ; physical plane and transformation of the governing equations

to the computational plane are contained in References 13

ﬁ{y and 23.
oty .
iﬁ? 2. Time Differencing and Linearization
L)

”* The governing equations cannot be solved directly in
A , . .
o the form of Equation (5.6) because of their non-linearity.

J .
*?v This is overcome by writing the flow quantities p, pu, ov,
a,' and e at their new time level as their value at the known
4 ""
b time level and their increment, i.e.,
e
ZM&

n+

%.-. SRS Vs (5.16)
i
R
Wty
!@@ The variable q can therefore be written at the new
_’m, time level t,,; as
&”
‘ 0 ’.'

X0 qitl = g + aqntl (5.17a)
e
e

' *i
o or

1
» v it AL )
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Agqntl = gntl o gn | (5.17b)

Ve e e a

A Taylor series expansion of q" backward about gqP*l yields !

qt = gntl - Atatqn+1 + 0(4At2) (5.18a)

qn+1 - agl = Atstqn'f'l + o(Atz) = Aqn+l (5.18Db)

Using the same procedure with central differencing for the

|
K spatial derivatives and substituting into the above equation !
|

vields

Aqn+1 - _At(ngn'*'l + gnFn+1) + ARe-l((San+1

+ 8, sn+l) + o(at?) (5.19)

where ﬁg and 5n are second order accurate difference
operators.

Backward differencing is first order accurate and
central differencing is second order accurate, therefore the
' Equation (5.19) is first order accurate in time and seccnd

order accurate in space.
The governing equation, Equation (5.6), is still
: non-linear. So that it can be solved directly rather than
iteratively, it is linearized. First E and F are rewritten

using a local Taylor expansion at gqf:
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;t: ¢ EI'H' 1

E" + [3qE)"aq™tY + o(at2) (5.20a)

. F*l = FN 4+ [3qF)Paq™t] + o(at2) (5.20Db)

%%i where [JdgE] and [5gqF] are Jacobian matrices. [Ref. 23)

j.1 Substituting Equation (5.20) into the time differenced
[}

governing equation, Equation (5.19), yields

C ([I] + &8, [ \E]I™ + Atén[aqF]n)(Aq}n+l

b o = = At (S

EN+S_ FN) + AtRe~1(s, RM+14s gntl) (5.21)
A E n g n

N This can be expressed as

i ([I1)+ats [A] + atg [B]) (aq)™1 = (R)D (5.22)

V{ where:

f (A]

(5 qE]M (5.23)
[B] = (5gqF)" (5.24)

w2 (R)D = -At(GéEn+6nFn) + AtRe'l(GéRn+1+5nSn+1) (5.25)

The governing equations for the unknown vector

{6q)"*1 are now linear and may be solved numerically.
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L
5

‘at,
;$, 3. The Alternating Direction Implicit Procedure
‘gal
M{ An approximation factorization method, developed by
,ﬁ Beam and Warming [Ref. 4] is now used to solve the governing
~i equation Equation (5.22), which has been 1linearized in
>3,
o (Aq]™*1l. Although Equation (5.22) could be solved directly,
Jw*-
Sk Beam and Warming's method reduces the 1large (and thus
\
'3 costly) matrix into a sequence of one-dimensional problems.
L~ ) ) . .

.§ The governing equation 1s approximated as

uN
[ 4
“ ([T) + 8t8,(AD) ([T] + ats (B (aqy™1 = (R)D (5.26)
g
f::
‘; which is then rewritten as two equations
. -

N

»

2 ([1] + Atég[A]){Aq*} = (R)M (5.27a)
i
{

'l
<! ([I] + bts [B]) (pa}™? = (ag*) (5.27b)
.l: n

\

b Since 65 and<§] are central difference operators, Equations
.:, (5.27) are systems of block tridiagonal matrix equations
::j composed of 4x4 submatrices. These can be solved by one of
'; several methods, such as LU decomposition. Once {Aq)}Ntl is
:i . obtained, {q)"*l can also be obtained from
'r:

.

, (@1 = (@" + (gt (5.28)
-~

C'
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;’ Boundary conditions at (Aqg) as well as the defined vector
5;:{ {Ag*} must be defined.

?'- 4. Stability and Accuracy Considerations

gs The ADI approach is implicit with explic..t boundary
: conditions and viscous terms that are lagged by one time
:) step. Implicit numerical methods theoretically are
%:': unconditionally stable with the size of the time step
',3:: limited by accuracy rather than stability. The time step
.‘. ’ stability limit imposed by the explicit boundary conditions
;“: must theret: re be less than the accuracy time step limit.
?!'3!.. [Ref. 4]

Q-_ A linear stability analysis for an explicit
:‘_E; procedure is performed [Ref. 23] to determine the maximum
.:i: ' time step possible, then a very conservative estimate is
v used. When calculating steady-state flow, the convergence
:: of the calculations can be improved by introducing a
:é;i; variable time step. This allows small time steps where the
» grid must be highly clustered, such as the boundary layer,
:EE in regions of shocks, and near stagnation points, and large
f.i time steps elsewhere where the grid is larger. [Ref. 23]
oy

., Viscosity slows a flow down by dissipating energy.
:’E Mathematically, this results in a reduction of flow field
-s gradients. The mathematical formulations used to include
®.-

viscosity in a flow can therefore also be applied to

L Y

J;);} }‘ ’

suppress errors inherently generated in certain methods.

R [Ref. 25]
B
o
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The capability of including this T"artificial
viscosity" as used by Murman and Cole [Ref. 26] is
implemented through backward differencing in a Taylor series
expansion. The truncation term mimics viscosity and is
known as artificial viscosity. When the method includes
this dissipative term it is known as implicit artificial
viscosity. Often however, more dissipation is required for
convergence or stability, or because it is advantageous to
apply selective dissipation. Then, explicit artificial
viscosity or explicit dissipation is included in the
numerical formulation.

Central differencing in a Taylor series expansion
decouples the even from the odd terms, causing high
frequency errors. The spatial derivatives are formulated
through central differencing and thus contain these errors
which influence the solution accuracy when using large time
steps. The time derivatives are formulated through backward
differencing; their artificial viscosity terms and the
viscous terms suppress this error somewhat. To further
dissipate the high frequency errors, especially in high
Reynolds number and inviscid flows, both fourth order and
second order artificial dissipation is explicitly applied to
the right hand side of the descretized governing equations
as was done by Jameson [Ref. 24]. [Ref. 23]

The fourth order terms alone lead to overshoots in

the vicinity of shocks. The second order dissipative terms
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correct this but tend to smear results in regions such as
the leading edge. This is resolved by implementing second
order dissipation only in regions of high pressure
gradients. Including artificial dissipation in the right
hand side of Equation (5.26) also corrects for incorrect
initial conditions after a sufficient time step.

To allow the viscous ¢terms to be explicitly
modulated and to remove any explicit stability 1limits,
artificial dissipation is also implicitly included in the
left hand side of Equation (5.26). The inclusion of
explicit and implicit artificial dissipation yields [Ref.
23]

- -1 - ET1-1 = +1
([I]+At<sg (A}~ &J Ggg)([I]+At6n[B] &J énnJ){Aq}n

= (Ry™1 - (D3 - Dy-1) - I7Ls (Tq) (5.29)

where is a function of the maximum pressure gradient and D
and Dj.j; are either second or fourth order dissipation. The
artificial dissipation terms do not affect the accuracy of
the formulation since all terms are of the same order as or
smaller than the truncation errors associated with the

spatial and time difference formulas.
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P 5. Application of Boundary Conditijions
; All of the boundary conditions are explicitly
applied after the ADI sweeps at each time step. The
explicit method was wused because of its ease of
implementat;on in the code even though implicit boundary
A conditions are more desirable because of accuracy and
stability considerations. [Ref. 23]

On the airfoil surface the no-slip condition and the

assumption of no flow through the surface correspond to

3p/an = 0 3p/3n = 0 (5.30)

Adiabatic flow is assumed. A two point extrapolation of the

above yield p and p to be [Ref. 14)
Pi,1 = (4Pj > - Pj, 3)/3 (5.31a)

y Pi,1 = (40,2 - Pi,3)/3 (5.31b)

E Internal energy and the coefficient of pressure may be
A obtained from the calculation of p and p. The incremental
y . quantities {Aq*} and {Aq}n+1 are also assumed zero on the
‘ solid surface and are solved in a similar manner as for p
and 5. The far field boundary conditions are assumed to be .

free stream plus the disturbances caused by the far field
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& hfitatientingtinding b iinintuiuinintuinie ikttt |
N
e
g

&
P
B not being placed at infinity as described in Section V.B.
‘ o
A
1& Internal energy is evaluated from
LA
X 2, .2
fﬁi € = 7gT + .5p(u” + v°) (5.32)
¢ ﬁl
o

' ) The downstream boundary conditions are extrapolated from the
,-4'_ »
::ﬂ adjacent interior points. At the boundary, pressure is
W8
3%3 taken to be freestreanm.

WY
' , The cut inherent in the grid system divides the flow
s,
o above and below the line emanating from the trailing edge.
Bty
3:, The flow quantities on the cut are obtained by averaging the
[

,:, values of the interior points above and below the cut. This

A

;% is acceptable because of the denseness of the grid in this
I
J\‘ region. [Ref. 23]
;’L
:': D. USE OF SANKAR'S N-S CODE

‘
BV .
5%’ Reference 13 details the use of Sankar's N-S code for
y"'"
#; both steady and unsteady flows. The code is submitted to
t"" i . .
$§ the NASA X-MP Cray via Job Control Cards. JCL options are
e
E'ﬁ selected so to access files where output data is stored or
0

;' to send data to a specific directory. Job Cards also
K Y
SN provide account and time limit information.
< Thill
hﬁ: The main program contains all of the "Write" statements,
. . . . .
';& which may or may not be required. Output information
‘N includes input data, airfoil coordinates in the physical and
%
%%‘ computational planes, grid information, residuals, pressure
."
5 s .

r'y and skin friction profiles, coefficients of 1lift, drag and
b

‘.
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moment, and velocity profile information. The time step
intervals at which these are printed is specified within the
program.

The majority of the program inputs are located in data

cards. These inputs and their definitions are decribed in
Table 5.1. See Reference 13 for a detailed program
description. The values used when implementing the Sankar

N-S code are given in Table 5.2.
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TABLE 5.1

INPUT PARAMETERS FOR THE SANKAR N-S CODE

INPUT CR N

IMAX Number of x coordinate locations

KMAX Number of y coordinate locations

DT Size of time step

WW Explicit artificial viscosity term

ALFA Mean angle of attack

ALFAl Amplitude of oscillation

ALFAI Angle below which modified turbulence
model is used

REDFRE Reduced frequency

AMINF Mach number

FNSTP Number of time steps

REYREF Reynolds number in millions

DNMIN Distance of first point off of the wall

TSTART Time calculation flag

FULOUT Plotting file flag

RSTRT If set, stored values are read to
continue iteration

PITCH Set for dynamic stall, indicates change
in aoa

PLUNGE Set for up and down motion of airfoil

FNU Number of upper airfoil coordinates

FNL Number of lower airfoil coordinates |

ZSYN Flag for symmetric airfoil }

XP X airfoil coordinates

YP Y airfoil coordinates
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TABLE 5.2
VALUES USED FOR SANKAR STEADY N-S CODE

VALUE
157

0.0

.12, .30
2000-8000
1-15
.000005~-.0001
0

0

FALSE
FALSE

33

a3

0

X airfoil coordinates for NACA
0012 airfoil

Y airfoil coordinates for NACA
0012 airfoil
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W vI. CI INTE VE_BOUNDARY LAYER METHOD

i': The Cebeci Interactive Boundary Layer (IBL) code uses a
§: two layer approach; an outer inviscid layer and a viscous
..:'\ inner boundary layer. In this it follows Prandtl's boundary
EE: layer theory by assuming the inner viscous flow is the only
EE':EE region where viscous effects are important. The remaining
;:J"‘ outer region is dominated by inertia terms and can be
" assumed inviscid. The inviscid outer flow characteristics
‘:: ' are determined th::ough Hess and Smith's panel method. The
‘ ' flow is assumed to have a vortex and source distribution
':j, such that it gives correct circulation and velocity over the
:E ) airfoil. The airfoil surface is replaced by a distribution
"“ of panels that satisfies the Kutta condition.

;,Egi The inner viscous flow utilizes the boundary layer
é::é method to determine the flow characteristics. A direct
f‘) boundary layer method is used in regions of large viscous
'{. stresses such as near the 1leading edge. This method
E'::{ prescribes an external velocity and requires the no slip
:'I, condition to be satisfied. In the rest of the flow, an
": interactive boundary layer method is used. Here, the edge
:g' boundary conditions prescribe a combination of displacement
' thickness and external velocity. An iterative technique is
z. used to solve for this flow. [Ref. 27)

.::'
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The inner and outer flow are coupled through an
interaction model. The boundary location and velocity are
unknown and are solved simultaneously through an iteration
between the inner and outer flow equations.

Cebeci's IBL code calculates where transition from
laminar to turbulent flow occurs and incorporates a
smoothing function. It also predicts separation and allows
laminar separation and then transition to turbulent flow and

subsequent reattachment of the turbulent flow.

A. VISCOUS INNER FLOW
1. Direct Boundary lLayer Method

The direct boundary layer method can be used in
regions of the boundary layer where the viscous effects have
not yet strongly influenced the flow. This usually implies
the stagnation point and the airfoil leading edge. The
advantage of minimal viscosity influence is the capability
of defining a stream function, Yy, that satisfies the

continuity equation
u = /3y and v = - 9Y/ox (6.1)

The momentum equation is subjected to the

Falknar-Skan transformation [Ref. 2]

n = -& vy (6.2a)
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Vi(x,y) (6.2b)

f(x,n) =

/o

The normal coordinate y and the stream function y are scaled
with respect to the external velocity for convenience and
accuracy. The boundary conditions of no flow penetration
through the wall and no slip condition at the wall are also
transformed. The resulting momentum eguation and boundary

conditions are given as

! (8 ] f
OE'") " + Zmrl) ££" eml-E?) = x(e g B (6.3)
where:
b =1+ V¢/V
m = (x/uy) (du, /dx)
and
n = 0: f'(x,0) = 0, f(x,0) =0
n="Ne: f£'(x,N¢g =1

Primes denote differentiation with respect to n. This is a
third order partial differential equation and cannot be
solved directly. Therefore, the box method developed by

Keller [Ref. 28] is used. [Refs. 12,30]
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The box method reduces the governing equations to a

first order system through introduction of two dependent
variables. The flow properties are then evaluated only
discretely by defining the solution domain as a rectangular
mesh. Instead of solving continuocus functions, all
parameters are approximated in terms of nodal values and
their location on the mesh. The domain of dependence is
substantially reduced and the overall solution scheme
simplified by solving for the nodal values through central
differencing.

The resulting nonlinear system is solved by Newton's
method. This iterative procedure linearizes the variables
at location i by rewriting the value at i as a sum of the
value at 1location i-1 plus some incremental value.
Substituting into the governing system of equations results
in a linear system of the unknown incremental values which
are repeatedly solved until they are small enough to be
neglected.

2. Interactive Boundary lLayer Method

Most of the airfoil is influenced by viscosity, thus
the direct boundary layer method can no longer be useé:
Instead, an interactive boundary layer method is used. It
is effective even in regions of rapid flow acceleration,
boundary layer separation, and zero skin friction. Both the
boundary 1layer displacement thickness and the external

velocity are now unknown. The Mechul function method is
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e used to solve the flow under these conditions by writing the
ey .

*} edge boundary condition as a sum of the inviscid velocity
el

*k distribution and the perturbation velocity due to viscous
.

'%; effects. The perturbation velocity, Sug(x), is determined
b

o from the Hilbert integral [Refs. 12,27]

e

.{3\ p . d do

o Sug(x) = ;f T WM = (6.4)
P X

2

o

N where:

e

N d(u_5*)

i ~—~——1is the blowing velocity.

L

1@

The solution method follows the direct boundary layer method

lft with several exceptions. The Falknar-Skan transformation,
W ;
ot with its constant boundary layer thickness, is no 1longer !
- applicable; nor is using ug as a reference velocity since ug
.r_:.

i; is now unknown. Instead,
P
A hY
2' uo

:::..‘. n = X y (6.5a)
~..

el

J ‘;s 1

gt - £(x,n) = v x,y) (6.5b)
K Ya_Vx

:..’!' (o]

o

_S- where the reference velocity is now taken as u,, the free
[y v

~‘3 stream velocity. The solution is again a downstrean
j?' ' marching technique. The FLARE (Flugge-Lotz and Reyhner)
Y
:$n approximation is used to continue the integration through
KA

l'
Ay regions of backflow. In these regions, where the velocity
s
o
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in relation to the forward velocities is assumed small, the
streamwise convection term udu/3x is set equal to zero.
3. Transition Model

For the IBL technique to be successful, the
displacement thickness must be accurately determined. This
is dependent on an accurate solution of the laminar and
turbulent flow equations, the transition region between
them, and when applicable, separated flows.

The values of flow parameters associated with
laminar and turbulent flow differ greatly: the boundary
layer thickness, momentum thickness, skin friction, velocity
profile, and drag are all influenced by increased
turbulence. For a code to accurately model the boundary

layer flow, both regimes must be modeled as well as the

transition between the <two and separated flow. The
influence of the transition location and length of
transition on the accuracy of the solution, especially for
low Reynolds flows, has been demonstrated by Reference 12.
The Cebeci IBL code uses Michel's criterion to predict
onset of transition. Michel begins transition when the
local Reynolds number based on the momentum thickness, Re,

is related to the length Reynolds number by the empirical

equation
22.400 0.46
Re = 1.174(1 + ) R (6.6)
R X
56
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where:

Ry = ueﬂv : and

L d .,('A
-, '_1"- ¥

The transition model is also highly empirical and is

5 4y

S

as previously given in Equation (3.20).

- =

s

As implied by the above discussion, turbulence onset

x

2% and its generation mechanisms are not thoroughly understood.
ii Nonetheless, it is evident that numerical methods need to
ii include transition capabilities to begin to accurately model
?% the boundary layer flow.

..

o B. INVISCID OUTER FLOW

QE Hess and Smith developed a panel method where the flow
{ﬂ is represented by a series of vortices and sources. [Ref.
: 30] They assume the vortex strength to be constant and
:ii distributed over the surface such that the correct
?g) circulation results. The velocity field is then modeled
:wé through a source distribution that forces the velocity to be
Tia everywhere tangent to the surface (the no penetration
.:- condition). This method is simplified by defining nodes on
&é the airfoil sur”s:e and connecting them with straight 1line
é;} panels. Obviously, greater accuracy is achieved by
R

increasing the number of panels on the airfoil. [Ref. 12]

o The Kutta condition must also be satisfied. The Kutta
: condition insures a unique solution by imposing zero loading
e} -

in the region of the trailing edge. The three basic
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principles of the Kutta condition are that the circulation
about the airfoil is such that the flow leaves the trailing
edge smoothly, the trailing edge is a stagnation point if
the trailing edge is finite, and the upper and lower
trailing edge velocities are finite and equal if the
trailing edge is cusped. The vortex strength is determined
from the Kutta condition and the source strength can then be

calculated from the vortex strength. [Ref. 30]

C. STRONG INTERACTION MODEL

The inner and outer flow influence each other and thus
cannot be solved separately if viscosity effects on pressure
are large. The strong interaction model couples the
boundary layer and the external viscous flow by allowing

both the displacement thickness and the pressure (which is a

function of external velocity) to be unknown. An iterative
simultaneous solution 1is then achieved by alternating
between the viscous and inviscid flow equations until
convergence is achieved.

The solution method is based on conformal mapping and
Fourier analysis techniques [Ref. 31]. The airfoil is
mapped onto a circle through a series of conformal mappings
and application of the fast Fourier-transform algorithm. It

then 1is mapped onto another circle that includes the

XQ boundary 1layer and so models the inviscid portion of the

S

;R: flow as that over an airfoil whose boundaries have been
“

D v

{% displaced by the viscous boundary layer. At the surface of
oS

s
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Zﬂﬂ the circle, the no penetration condition does not apply. To
W account for this, a nonzero normal velocity (blowing
¢ -

0 . . .
' velocity) is prescribed. ([Ref. 29]

b The boundary layer is solved from the surface to the

outer boundary. The outer boundary conditions are defined

v by the interaction law

40

3

s 3 ; X

: A (u'e)l'k = (ue)l,k-l + z cik[[“e‘s *)k,K-l(ue (S*)k,K-l (6.7)
G k=1
f:j The solution of this is an approximation that requires
T

ny several sweeps over the upper and lower surfaces to achieve
18

) converger.ce.

o

ﬁ Convergence between the boundary of the two methods
b \‘

Iﬁ is checked and the procedure is repeated by updating the
¢
{_' product of the external velocity and displacement thickness
2y,

,21 until desired convergence is achieved.

/.) D. USE OF CEBECI'S IBL CODE

wH Reference 29 details the use of the Cebeci IBL code.
!
g The code is submitted to the Naval Postgraduate School IBM
L

St mainframe via Job Control Cards where account information,
Eti running time, and size commands are set.

i

IB Output information includes input data, coefficients of
*'(

1‘ lift and drag, airfoil coordinates, shear stress, skin
:x: friction, displacement and momentum thickness, and velocity
:2 profile information. The inputs to the program are located
ol
'ii in data cards and are defined in Table 6.1. See Reference
5
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X . 29 for a detailed program description. An example of input

parameters used is given in Table 6.2.
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INPUT
IPT(1)

A~ w e ™

IPT(2)

IRSTRT

IGILMAX
! IPRINT
‘ RL

XTRL

XTRU

GTR

MPTS

YP

s = e

PO -
~q_‘v‘-¢.,- At - b U

¥y o Y, ‘i;‘.'
A e

(A D
A R g e Yy

PPN YN Y U W M 1T T T T e T s - e v‘j

TABLE 6.1

INPUT PARAMETERS FOR THE CEBECI IBL CODE

DESCRIPTION

Flag for specification of lower surface
transition

Flag for specification of upper surface
transition

Flag for restarting solution
Number of sweeps

Flag for output printed

Reynolds number in millions

Lower surface specified transition
Upper surface specified transition
Angle of attack

Empirical constant for length of
transition

Number of coordinates
X airfoil coordinates

Y airfoil coordinates
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TABLE 6.2

- N VALUES USED FOR THE CEBECI IBL CODE

.E% INPUT VALUE
f%¢ IPT(1) 4

it, IPT(2) 1

el IRSTRT i 0

o IGLMAX 16

p e IPRINT 2

ENE RL 1-15
o", XTRL 0

- XTRU .005
Wiy ALPO 0-12
b GTR 1200

‘ MPTS 101

% XP X airfoil coordinates

YP Y airfoil coordinates
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.\. VII. R TION_ O OMPUTATIONS

?R Simulations of steady flow at Reynolds numbers ranging
;{? ) from 1 million to 15 million at zero degrees angle of
r% attack, angle of attack studies for Reynolds numbers of 1.5
§§ million and 6 million all over a NACA 0012 airfoil are
%?l presented in this chapter.

Ehg Four aerodynamic factors are investigated: coefficient
?2 of 1lift, coefficient of pressure, velocity profiles at
k: specified locations along the chord of the airfoil, and skin
-~ friction along the airfoil chord. In the steady flow cases
%g. results from the Sankar N-S code are compared with results
Eg from the Cebeci IBL code. umerous studies have documented
'*f the validity of the Cebeci code in steady flow [Refs. 2,12,
3}5 28,30], however, the éebeci IBL code only considers
%& incompressible flow. Therefore, the Sankar N-S code was
ES. limited to the upper regions of what is normally considered
?: incompressible flow, .3 Mach. Unless otherwise indicated,
et

$§ all cases are run at .3 Mach.

'ih The coefficient of l1ift as a function of angle of attack
2.:..:; is plotted in Figure 7.1 for a NACA 0012 airfoil at a
{: Reynolds number of 6 million. Figure 7.2 shows lift
|:g coefficients versus angle of attack for a Reynolds number of
?:3 1.5 million.
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Next, the correlation between the suction pressure
coefficients for various Reynolds numbers and angles of
attack were investigated. At zero degrees angle of attack
the coefficient of pressure, Cp, of the upper surface is the
same for the five Reynolds numbers presented: 1, 3, 6, 10,
and 15 million, using both Cebeci's IBL code and Sankar's
N-S code. Figure 7.3 plots this. Coefficients of pressure
at angles of attack of 0, 4, 8, and 12 degrees at a Reynolds
number of 6 million and angles of attack of 0, 2, 4, and 6
degrees for a Reynolds number of 1.5 million and a Mach of
.12 are shown in Figures 7.4 and 7.5 respectively. The
conditions of Figure 7.5; 1.5 million Reynolds number, .12
Mach, and 0, 2, 4, and 6 degrees angle of attack, were
chosen to verify steady state conditions presented in Tang
[Ref. 23]. The pressure coefficients were compared,
however, no other results were presented by Tang.

Skin friction and velocity profile information was then
sought. The verification studies done by References 3, 7,
14, and 15 did not address either. Therefore, the only
comparisons made were with the Cebeci IBL code. Figure 7.6

shows the coefficient of skin friction, Cg, as a function of

airfoil chord. The Sankar N-S code 1is calculated as
turbulent over the entire airfoil [Ref. 13]. The Cebeci IBL

code allows specification of transition from laminar to
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Eony turbulent flow or allows the option to have the code compute
-l-\ﬂ- |
S8 transition [Ref. 30]. Figure 7.6 plots Cg for the NACA
N

Oy
T 0012 airfoil at a Reynolds number of 6 million at =zero
. )

*?x degrees angle of attack for eight cases, three using the
o

4h Cebeci IBL code and five using the results of the Sankar N-S
o

prl

3 code:

o

RS Cebeci IBL Code

oo

e 1) turbulent flow; transition at .005c

l"‘.

H 2) computed transition at .27c

B

ﬂﬁf 3) laminar flow; transition at .70c

‘-";".

SN Sankar N-S code

' *.)-\

>

o 4) first grid point at .0001c

1, -_’:

ﬁﬁ. 5) first grid point at .00005c

g

5:? ’ 6) first grid point at .00002c

55

o

{ 7) first grid point at .00001c

Yiu

3
.

8) first grid point at .000005c

ol g }
e
R
ety 4, 4

The C-grid generates 41 points in the direction,

x
2

%

clustering them near the wall and stretching them further

:%? from the wall. Specifying the first grid point's location
EEE from the wall determines where the grid clustering begins.
JQ; This study was repeated for a Reynolds number of 3
'EE‘ million at zero degrees angle of attack in Figure 7.8. Six
;§§3 cases are presented, two using the Cebeci IBL code and four
‘5: using the results of the Sankar N-S code:

o

S

IO

71




%&. Cebeci IBL code

é?i 1) turbulent flow; transition at .005c

h XS

! 2) computed transition at .44c

L#E Sankar N-S code

é& 3) first grid point at .0001lc

‘?i 4) first grid point at .00005c

i*t 5) first grid point at .00001lc

_*;3‘: 6) first grid point at .000005c

i‘. Figure 7.8 presents a comparison of five cases for a
zé Reynolds number of 15 million at zero degrees angle of
5%% attack:

() Cebeci IBL Code

;E& 1) turbulent flow, transition at .00Sc

:g 2) specified transition at .70c

{.i Sankar N-S code

f“'{ 3) first grid point at .000lc

;ﬁ% 4) first grid point at .00005c

é): 5) first grid point at .00002c

iéﬁ Velocity profiles are plotted in Figures 7.9 through
73% 7.17. Figures 7.9 through 7.12 show velocity profiles for
‘éi the conditions of Figure 7.6: Reynolds number = 6 million,
i:é angle of attack = 0, N-S Mach = .3. Figure 7.9 is the IBL
;&J; velocity profile computed when transition is specified at
.‘” .005c. Figure 7.10 is the laminar velocity profile resulting
é&: from specifying the IBL transition at .70c. Figure 7.11 and
gbf 7.12 are the velocity profiles computed when specifying the
S
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.0001c

1st Grid Point

M= .3,

AOA = 0,

Re = 1M,

Velocity Profile; N-S,

7.17
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N-S first grid point from the wall at .000lc and .00002c

; respectively.
{. Figures 7.13 through 7.15 are the velocity profiles
’: associated with the conditions of Figure 7.8: Reynolds
E number = 15 million, angle of attack = 0, and N-S Mach =
‘ﬁ .30. Figure 7.13 is the IBL turbulent velocity profile,
1& Figure 7.14 is the N-S turbulent velocity profile resulting
;E from specifying the first grid point off of the wall as
{{ .0001c, and Figure 7.15 is the N-S velocity profile
;5 resulting from specifying the first grid point off of the
. wall as .000005c.

P Figures 7.16 and 7.17 are velocity profiles generated
f; from a Reynolds number of 1 million at zero degrees angle of
EE attack and .30 Mach number. Figure 7.16 is the IBL velocity
é- profile resulting from specifying transition at .005c and
” Figure 7.17 1is the N-S velocity profile resulting from
E’i specifying the first grid point at .0001lc from the wall.

2 The results of Figures 7.6 through 7.8 are replotted in
TE Figures 7.18 through 7.20. However, only the turbule«-:
:E cases and small grid mesh conditions are shown. Figure

W

] plots the IBL turbulent skin friction at zerc de1r..

;E of attack for Reynolds numbers of ¥, & -

:g Figure 7.19 plots the N-S skin t:. -*

; tions as Figure 7.1% for s+

2 first qrid poins e ¢

; compares .
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Next, comparisons between the IBL and N-S skin friction
for varying angles of attack were investigated for the
conditions of Figure 7.4: Reynolds number = 6 million, Mach
= .3, and Figure 7.5: Reynolds number = 1.5 million, Mach =
.12, Figures 7.21 through 7.24 are for a Reynolds number of
6 million and a Mach of .3. Figure 7.21 plots the IBL skin
friction profile for angles of attack of 0, 4, 8, and 12
degrees. Transition is specified at .005c. Figure 7.22
plots the N-S skin friction for the same angles of attack
and a first grid point off the of the wall of .000lc.
Figure 7.23 is also the N-S skin friction, but the first
grid point off of the wall is specified at .00001c. Figure
7.24 compares the IBL and N-S skin friction profiles for 12
degrees angle of attack.

Figures 7.25 through 7.28 present skin friction profiles
for a Reynolds number of 1.5 million and a Mach of .12.
Figure 7.25 is the IBL turbulent skin friction (transition
is specified at .005c). Figures 7.26 and 7.27 are the N-S
skin friction profiles computed when the first grid point is
specified at .0001c and .00005c, respectively. Figure 7.28

compares the IBL and N-S skin friction profiles for 6

degrees angle of attack.
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ey VIII. S AND DISCUSSION

-

The Sankar N-S code has been compared to the Cebeci IBL

code. Integrated values that are not strongly influenced by

SN

viscosity, such as coefficients of 1lift and pressure,

..n’ :--.5:‘.‘.':’

ey correlate well, as shown in Figures 7.1 through 7.5, and
with the pressure coefficients presented in Tang [Ref. 23].

However, the viscosity influenced boundary 1layer values,

Q;“.

j& such as the coefficients of skin friction and velocity
'

$k profiles, are very sensitive to the type of flow and the
.‘.i\'

@ grid size. This is evident in Figures 7.6 through 7.8. The
v

55 IBL laminar skin frictions are much lower than the turbulent
‘.'0 »

{k ’ values. Also, the influence of the grid mesh on the ability
A

of the N-S code to compute turbulent values is shown. When

Pt the first grid point off of the wall is chosen as .000lc,

L

A

%i. the resulting skin frictioné appear laminar for the 6
;& million and 15 million cases (Figures 7.6 and 7.8). The
?% lower the Reynolds number, the 1less sensitive the
g% computations are to grid size, as can be seen by comparing
;; the IBL and N-S skin friction values of a Reynolds number of
;; 3 million (Figure 7.7). 1In all cases, specifying the first
%{ grid point closer to the wall positions more points in the
%;‘ boundary layer. ‘For'Figure 7.6, when the first grid point
?; from the wall is specified at .0001c, 9 points are located
1y

Vﬂ ; in the boundary layer at 10% chord, 16 points at 50% chord,
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[y and 29 points at the trailing edge. In comparison, when the

first grid point from the wall is specified at .000005c, 13

i

2*‘ points are located in the boundary layer at 10% chord, 19
,gé points at 50% chord, and 29 points at the trailing edge of
'ﬁﬁ the airfoil.

‘§$ When the influence on skin friction of subsequent grid
?:a:t. refinements in the N-S code is negligible, the N-S skin
%%l frictions are substantially greater than the values computed
iﬁh‘ by the IBL code when transition is specified at .005c. See
‘?ﬁ Figure 7.20. It is of interest to note, however, the higher
%g% coefficients of skin friction evident when transition is

'ﬁ? delayed in the IBL code as in Figure 7.6.

%2! The velocity profiles, Figures 7.9 through 7.17, vary

Eﬁ: little in the turbulent cases, regardless of grid size or

;T‘ Reynolds number. The shape of the profiles varies between

?ﬁi the IBL and N-S cases, but both exhibit turbulent velocity

fs%( profiles. There is a discrepancy between the skin friction

i}; and velocity profile results computed by the N-S code when

gé' the first point off of the wall is .0001lc. The coefficients

gg of skin friction indicate laminar flow, whereas the velocity

‘". profiles are turbulent. A laminar velocity profile, Figure

:§§ 7.10, is calculated using the IBL code (Reynolds number of 6

gﬁf million, 0 degrees angle of attack).

Jé: The influence of the grid mesh is again evident in the

Egi angle of attack studies, Figures 7.21 through 7.28. The

coefficients of skin friction for the higher Reynolds number
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of 6 million seem to not be dependent on angle of attack if
the grid points are not located sufficiently close to the
wall. This is not evident for the lower Reynolds number of
1 million. The N-S skin friction values, when no longer
influenced by grid size, are again higher than the fully
turbulent values computed by the Cebeci IBL code, as seen in
Figures 7.24 and 7.28.

Varying the artificial viscosity in the Sankar N-S code
did not vary the solution of the skin friction. However,
all cases were run with the first grid point .000lc from the
wall, so no conclusion should be drawn. If the number of
time steps was exceedingly large (8000 steps) for zero
degrees angle of attack, the pressure and skin friction
profiles began to indicate separated flow.

Angle of attack studies using the Sankar N-S code
required a large number of time steps (approximately 7000)
before the coefficient of 1lift converged to realistic
values, regardless of the first grid point off of the wall
specified. The coefficient of friction values stabilized
relatively quickly, within 2000 to 3000 t{?e steps. Several
computer runs at each angle of attack and Reynolds number
were then required to determine when specification of the
first grid point off of the wall no longer influenced the
skin friction values computed. At this point, the results

were assumed to be converged.
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The IBL code took less than 16 iterations to converge,
regardless of the Reynolds number chosen or the angle of

attack. Very 1low Reynolds numbers would require more

iterations, however.
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‘I"." IX. CONCLUSIONS AND RECOMMENDATIONS
o ¢
e
:;u.:; Both the Sankar Navier-Stokes Code and the Cebeci
i'.'
Vol
1::5;:: , Interactive Boundary Layer code show reasonable results for
P,a'l.q .
'\ high Reynolds number, incompressible steady flows over a
»y
,:'.::: NACA 0012 airfoil. The discrepancy in skin frictions should
:o:.‘!
':.::: be resolved and the influence of dissipation on the skin
“:|'.
o friction investigated. These steady-state results should
g
;:’:'.: then be extended to other airfoils and low Reynolds flows to
':.‘.'
)
,?.:’; determine the effect of increased viscosity on the codes.
.

The effect of transition on the velocity profiles and the
a2 _
L skin friction is modeled in the Cebeci IBL code; however,
4’}[:‘
"',"fs‘ ‘ the lack of a transition model and a smearing function in
Kol
' the Sankar N-S code 1limits its ability to model most
P
::'c experimental flows, especially at 1low Reynolds numbers.
o
b
)::::: Also of importance is the wake influence, which has not been
e
) addressed in this report, and the growth of the boundary
)
D)
K * layer along the airfoil. Since the velocity profile results
Ay
o are presented non-dimensionally, this trend is not evident.
R
L The difference in profile shapes generated from the N-S code
.'l",
::':'{ and the IBL code could be resolved better if the actual
Bl
:’:::‘:: boundary layer profile, rather than a non-dimensionalized
@ profile, is used.
N .,
:::.::' Neither code was extensively compared to experimental
.‘.’
':?f.’ results for skin frictions or velocity profiles. This is,
s
o
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of course, a criterion in determining the accuracy of the
codes. The cost and time considerations associated with
running the codes indicate that, at the present, for
steady-state runs, the IBL code is more effective. The N-S
runs were submitted to the NASA X-MP Cray, where waiting
times of 24 hours before the program was executed was
common. Execution times ran between 10 and 40 minutes, at a
cost of $1000 per hour. In comparison, the IBL program
normally was completed in 10 to 30 minutes on the Naval
Postgraduate School IBM mainframe, for less than $50.

The N-S code is a very effective tool for calculating
dynamic stall characteristics. Its capability as a general
flow solver, however, is limited in comparison to the IBL

technique in terms of cost and time constraints. )
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